

AI4DI - Platform for cross-cutting requirements of AI in DigitizingEuropean Industry to facilitate a common roadmapV1.0

Multi-national consortium contributes to aligned AI-methods and harmonized Requirements for competitve digital value chains SINTER in the manufacturing for the succes in global markets

https://ec.europa.eu/epsc/publications /strategic-notes/rethinking-strategicautonomy-digital-age_en

Commission

EPSC Strategic Notes

Issue 30 July 2019

Rethinking Strategic Autonomy in the Digital Age

European **Political Strategy** Centre

In the 21st century, **those who control digital technologies are increasingly able to influence economic, societal and political outcomes.** Policymakers around the world are waking up to the critical imprint that digital technologies have on their countries' strategic autonomy and a global race for technological leadership has ensued.

Figure 3: EU outspent on private sector investment in AI

Total estimated equity investments in AI start-ups annually, 2011 to 2018, by start-up location.

* 2018 figures are projections based on data for January-June.

Critical digital infrastructure: high risks require extra caution

While open markets and competition must remain the key drivers of innovation and efficiency, the growing importance of digital technologies for most of Europe's critical infrastructure warrants the application of a more precautionary stance towards reliance on foreign components, especially those coming from authoritarian states. This is particularly clear as regards 5G technology, where stricter review mechanisms should be applied to manage potential network vulnerabilities.

News July 2019

A strong tech sector is a prerequisite

Without a strong industrial base, built on a common tech strategy and pooled resources, Europe will be unable to domestically produce the technologies it needs to stay at the forefront of global competition – be it in economic or defence terms. Foreign imports will remain necessary, but collateral risks – e.g. supply chain disruptions or compromised equipment penetrating Europe's critical infrastructure and digital systems – need to be managed.

Alliances are a must

In an interconnected world of global value chains, where trust is becoming a rare commodity, there is a real need to build forward-looking alliances around digital strategic paradigms. Europe is spearheading this approach, e.g. in its partnerships with the US, Japan or NATO, and with its efforts to craft rules on data governance and ethical uses of AI. But its ability to shape international norms and standards in a way that reflects its interests and values will be a function of its technological edge and genuine demand for its products.

AI Taiwan

Enabling Social Impact with AI+IoT

Innovation, Collaboration and Inspiration

Artificial Intelligence Strategies

Guan-xi

Trust in People is the key to success in collaboration

Step by step to aligned ideas and collaboration

Collaborative R&D on AI for the Transition in the Digital Industry along the value chain

Data-

Industy in lead	C		muRata (infineon	life.augmented	VRANKEN POMMERY	Linkker
WP/ mat	'SC rix	Automotive Manufacturing Predictive Diagnostics	Semiconductor SC2 Manufacturing Fault Detection Visual Inspection	Machinery SC3 Human Machine Collaboration Al as Service	Smart Food and Beverage Production	SC5 Mobility as Service
$\overline{\mathbf{m}}$	WP1: Requ	irements and S	Specifications for Indu	ustrial AI Solutions and	d Demonstrators, Al	Road Mapping
SINTEF	WP2: Syst	em Level De	sign for Industrial A	AI Solutions		
	WP3: AI N	/lethods, Sem	niconductor Comp	onents and IIoT De	vices	
BRNO UNIVERSITY OF TECHNOLOGY	WP4: Emb	bedded Syste	ms, Edge Computi	ing and Algorithms	for Industrial AI	
life.augmented	WP5: Inte	gration and [Deployment of Al	Applications in Indu	istry	
AVL of	WP6: Vali	dation, Verifi	cation and Tests			
TeraGlobus SAVE THE CARTH	WP7: Diss	semination, E	xploitation and Sta	andardization		
infineon	WP8: Pro	oject Manag	gement and Proj	ects Clustering		

AI4DI = AI for Digital Industry Vision, Mission, Objectives, Key targets, Pillars, Contributions, Ontology, Semantics, Impact, ….

Objective 1 Al applications to be	Objective 2Make AI usefullRoadmaps, exploitation studies, business cases		Objective 3 Deployment plan showing how to develop and valorise the Al technology
demonstrated under conditions as close as possible to real-life.	Al for Di		
Use AI in real-life	Distributed AI an	d ML from Cloud to edge	Put AI in Business
Objective 4 Build Al community in Europe complementary with others	e which is initiatives	Objective 5 Build and sustain dynamic systems in Europe ensuring trusted Al for safety critic	AI for safety critical systems

Vision: Silicon-Born-AI

for Accelerated AI in Embedded Control for Edge Computing and IoT/IIoT devices in industry

Dedicated AI methods for the
industry according to the AI-attributesto tackle big amounts of data
out of the real industrial world

Dedicated AI Software on improved AI hardware architectures for the industry

Enhanced connectivity for fast communication

level

on every

Accelerated AI

Dedicated CPU + AI in Silicon components

For native AI computing For native AI algorithm

Dedicated Sensors + AI in Silicon components (Sensors, MEMS) Sensing and preparing the edge data Silicon-Born-AI

More Moore ++ AI

More than Moore ++ AI For native AI perception and actuation New value opportunities for automotive OEMs along the value chain enabled by AI. AI4DI addresses supply chain management and manufacturing, the most promising areas along the whole value chain

By facilitating the generation of new insights and automation of processes, Al enables OEMs to capture new value opportunities at each stage of the value chain

Value potential from bottom-line effects in percent of costs in the corresponding part of the value chain Value potential from top-line effects in percent of total revenue

AI4DI addresses areas where the introduction of AI will have maximum impact by 2025

Value potential Data-based insight generation	Research and development 7% R&D prioritization and performance improvement, e.g., using outcome prediction for experiments Data-driven design-to-value to improve product to customer fit Wear and tear analytics Optimization of product features to production process	Procurement 4% Advanced spend intelligence/ analytics-based spend optimization Supplier performance scorecard Procurement organizational performance scorecards Cleansheet analysis for parts and index-based parametrization	Supply chain management 15% Closed-loop planning, e.g., integrated pricing and inventory mgmt. across channels, incl. planning forecasts SC simulation and risk management Automation of warehousing based on real-time information Improved utilization of transport capacity based on real-time information	Manufac- turing 15% Al-based predictive maintenance of assets through monitoring of parameters In-line digital quality mgmt, e.g., visual control for real- time process optimization	Sales and marketing 12% 0.9% End-to-end predictive analytics for sales, e.g., build-to-stock Postpurchase cross- and upselling Programmatic/personalized marketing Cross-channel customer relationship management Al-supported lead mgmt, e.g., by providing guidance for managing customer interactions	Aftersales and services 5% 0.3% Early recall detection and software updates Predictive service recommendations, incl. pulling customers to own/ licensed garage Assortment and storage level optimization for spare parts Remote maintenance for problems and breakdowns	Support functions 19% Analytics of financial data and reports to enhance decisions Credit risk optimization by computation of customer risk score Al-based prediction of IT problems to minimize downtime
Value potential	3%	4%	7%	6%	9%	2%	3%
Al-based process automation	Automated documentation of product data across product life cycle Automated data transfer between different systems Virtual prototyping and testing Digital project life cycle model	Procure-to-pay work flow processes, e.g., by linking procurement to back-office finance Comparative document analysis to convert documents into text and perform analysis Automated compliance management	Automated guided vehicles and indoor navigation Automatic order placement and mgmt., esp. where algorithm can handle special situations	Advanced process control for real-time optimization Autonomous guided vehicl for intralogistics Visual quality control for fina product or incoming parts	Automation of order process, from configuration to order processing and S communication of delivery date Automatic placement of advertisements across channels	Automated order regis- tration, handling, and payment Optimized document mgmt. and automated processing Al-based visual inspection for 1st assessment of service effort	Automated prefilling of invoices Automation of accounts payable Automated claims mgmt Automated billing via scans or pictures
Value potential	4%	< 1%	8%	9%	^{3%}	3%	16%
SOURCE: McKinsey					- MCK	insey&Con	ipany 2018.

Collaborative work to understand the Requirements for the Digital Transformation of connected and diverse industrial sectors on an abstract level

European industries in transition

Machinery

Semiconductor-Industry

Automotive Manufacturing

Beverage Industry & Agriculture

Transportation

Co-Modal Mobility

Machinery

Semiconductor-Industry

Automotive Manufacturing

Production Control is Key Enabler

Beverage Industry & Agriculture

Collaborative Requirements Digital layer and twinning

Transportation

Machinery	Use cases		
Wood machinery with innovative HMI interface	AI enhanced Augmented reality based on object recognition on tracking, Deep Learning with a special focus on the edge computing solution, AI-specific hardware and software architectures for ultra-low power DCNN SoC		
Smart robot	Convolutional Neural Networks for object detection, NN using supervised learning, Inference on FPGA-based SoC, Automatic generation of synthetic training data, Augmentation of training data		
Learning systems distributed over computationally heterogeneous resources	Reservoir Computing and Deep Learning technologies		

Automotive Manufacturing

AI supported automotive manufacturing and logistics (Robotic controlled island manufacturing)	Evolutionary algorithms for optimization, Machine learning for pattern recognition, Data Mining for coherence analysis of large amounts of data, Neural networks for learning heuristics, Deep learning for quality and safety assurance, Reinforcement learning for robotics control, Transfer learning with digital twins
Real time predictive maintenance	Reinforcement learning, Model based reasoning based on physical damage models
Autonomous reconfigurable battery systems	Evolutionary algorithms for optimization of the control strategy and for controlling the reconfigurable system, Machine learning for pattern recognition, Data Mining for coherence analysis of large amounts of data, Neural networks for learning heuristics

Beverage Industry & Agriculture

Beverage production - Champagner	Convolutional neural network for analysis of sensor data, Deep Learning Neural Networks for quality prediction, Edge computing devices, Low power AI, neuromophic computing, off line training, machine learning framework binary quantization module.
	Deep learning, Artificial neural networks/convolution neural networks, Reinforcement learning, Cognitive computing and machine learning, digital twin and AI
Transportation	modelling, low latency communication, edge computing, and IIoT devices facilitating near real time decision management, AI algorithms, AI embedded platforms and
	AI training platforms, and autonomous vehicle/robotic processes automation are AI technologies addressed for predictive maintenance and vehicle routing optimization.

Semiconductor-Industry

AI based FMEA generator	Deep Learning for Natural Language Processing, Light weight ontologies for knowledge representation
AI based 3d visual inspection for quality assurance	Deep Neuronal Networks for sample classification of 3d images
Fault Package detection	Ternary Neutral Networks, Convolutional Neuronal Network, Deep Learning
Automatic Interpretation of SEM images from semiconductor devices and Silicon package fault	Addressed AI Methods: Deep Neuronal Networks for sample classification of SEM as well as X-Ray and Optical images, Generative adversarial networks for image conversion

Semiconductor-Industry

Device: VO1, Lot: VJ28P01, Wafer: 11, Layer: FINAL, Scan Date: 09/06/2018, Scan Time: 00:11:53, Y1 Histogram: Class(Description)(R<Roughbin>), Result: N/A

Automotive Manufacturing

Driverless transport systems in

Machinery

Champagne Manufacturing line

Maturity control

17

3. Human Machine collaboration

4. change detection -

AI Addressed Methods: Evolutionary algorithms for optimization of the control strategy and controlling the reconfigurable for system, Machine learning for pattern recognition, Data Mining for coherence analysis of large amounts of data, Neural networks for learning heuristics Addressed AI Attributes: : Cognition, detection, anomaly predictive maintenance, self-optimized control

Autonomous Reconfigurable Battery System

pre-α system schematics based on modules from FhG-IISB, Chroma and ITRI

Transport

- 1. Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations The Role of Traffic Density
- Cooperative mobile robotics: Antecedents and directions
- Multiagent systems: a modern approach to distributed artificial intelligence

for the PSO alcovity

- Towards robust automatic traffic scene analysis in real-time
- Computational Intelligence in Urban Traffic Signal Control: A Survey
- Agent-based control for networked traffic management systems

The 7 Use Cases are intended to validate the 7 KTs and contribute to the achievement of the 5 Objectives.

- 1. Digital ECS value chain for virtual factory, uses AI methods as distributed intelligence, which is scheduling slots in a manufacturing process of vehicles and also orders components from suppliers who are also using AI affecting their production process to produce and deliver the components in time.
- 2. Digital Twin Factory, aims at a Digital Twin for the AI-Based Optimization of Heterogeneous Manufacturing Processes.
- 3. AI-based FMEA generator, AI based Knowledge base that combines the knowledge of existing Technology FMEAs.
- 4. Safe human interaction with robotics machinery and tools, addresses the deployment of AI-based Human/Machine Interfaces striving the improvement of the working conditions and productivity of human operators interacting with complex stationary machines.
- 5. Change detection applications, is composed of several applications addressing the challenge of change detection in realtime sensor data using AI methods. The resulting information will be used in order to take actions to efficiently operate systems, e.g. cyber-physical systems, machines or processes.
- 6. Robotics application, is also composed of several applications addressing mobile or rather industrial robots that offer manifold manipulating tasks. AI methods are adapted in order to control the complexity associated with this flexibility as well as to improve the human machine collaboration.
- 7. AI implementation, groups the AI4DI activities on implementing AI methods on the wide range of available resources (IoT/edge/Cloud) e.g. for the purpose of an overall traffic management based on data from individual vehicles (bus or car).

The 4 Pillar structure addresses the Digital Industry as a whole and fosters AI in the Digitalization using the 7 Key target approach to evaluate the relevance of AI methods

AI4DI has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 826060.

